
Charge separation in Coulomb liquids: mean-spherical approximation and Monte Carlo

simulation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys.: Condens. Matter 11 3019

(http://iopscience.iop.org/0953-8984/11/15/008)

Download details:

IP Address: 171.66.16.214

The article was downloaded on 15/05/2010 at 07:18

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/11/15
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter11 (1999) 3019–3028. Printed in the UK PII: S0953-8984(99)97677-4

Charge separation in Coulomb liquids: mean-spherical
approximation and Monte Carlo simulation

Thorsten Koslowski and Uta Beck
Institut für Physikalische Chemie I, Universität Karlsruhe, Kaiserstraße 12, D-76128 Karlsruhe,
Germany

Received 18 September 1998, in final form 27 January 1999

Abstract. With reference to dense ionic liquids like the alkali metal–alkali halide melts,
Mx [MX] 1−x , we present a study of the distribution of the excess electronic chargex in Coulomb
systems with electronic degrees of freedom. Within the mean-spherical approximation to the
restricted primitive model of ionic liquids, we demonstrate the stability of systems that exhibit
a maximum separation of cationic charges,zM ∈ {0, 1}. The results are verified and illustrated
by Monte Carlo simulations. We discuss the implications of the principle of maximum charge
separation for the electronic structure and the thermodynamics of dense ionic liquids, possible
additional applications and its limitations due to the neglect of quantum effects.

1. Introduction

Alkali metal–alkali halide melts Mx [MX] 1−x (M = Li, Na, K, Rb, Cs; X = F, Cl,
Br, I) are a subject of current interest in physics and physical chemistry, in particular as
regards their microscopic and electronic structure [1]. For the prototypical K–KCl system,
experimental work covers neutron scattering [2], NMR studies on the related Cs halides [3],
conductivity measurements [4], ESR spectroscopy [5], the determination of optical absorption
properties [6], ellipsometric studies [7], small-angle x-ray scattering [8] and the measurement
of thermodynamic data [9].

For K–KCl, the following picture emerges with increasing excess metal concentration
x. For small values ofx, excess electrons populate defect states like F centres or spin-paired
bipolarons. They can be characterized by an optical absorption process from a localized ground
state of s symmetry to a localized excited p state, giving rise to an absorption band that can be
described by a Gaussian line shape [6]. Even for the smallest excess metal concentrations, a
second, Drude-like component can be observed in the frequency-dependent complex dielectric
response [7]. It is usually attributed to weakly localized electrons, which should make a
considerable contribution to the electronic conductivity. The schematic theoretical density of
states originating from this picture is presented in figure 1 [10]. Withx increasing further, the
alkali metal conduction band is populated. The system undergoes a continuous non-metal–
metal transition atx ' 0.2–0.3 [1] and thus changes the character of the chemical bond
from ionic to metallic. In addition to a large amount of experimental evidence, quantum
path integral simulations [11] andab initio molecular dynamics studies of the Car–Parrinello
type [12] support this interpretation.

An important problem is posed by the electronic degree of freedom inherent to the system
even in the absence of F centres. The excess electronic charge can either be completely
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Figure 1. A schematic density of states
including defect levels in the regime of a small
excess metal concentration. The chlorine
valence band (a), F-centre ground state (b),
F-centre excited state (c) and potassium
conduction band (d). The energy is in electron
volts, and the density of states is per electron
volt and atom. After [10].

delocalized over all metal cations—a picture appropriate in the metallic regime—or may be
localized on individual metal atoms, a behaviour that is usually attributed to the low-x regime.
Disorder-induced Anderson localization of eigenstates [13] in ionic liquids is favoured by the
presence of spatial fluctuations in the Coulombic energy [14]:

VM;i = e2

4πε0

∑
j 6=i

zizj

rij
. (1.1)

As argued by Logan and Siringo [14], the spatially disordered distribution of ions in a liquid
with charge transfer leads to strong local fluctuations in the local Madelung fields (∼1 eV)
potentially experienced by an electron as it hops between the cations.

In the article of Logan and Siringo and in subsequent numerical work [10,16], the so-called
restricted primitive model (RPM) of ionic liquids, comprising hard-sphere ions that interact
via point charges, has been applied:

V (r) =

∞ for r < σ

e2zizj

4πε0r
for r > σ .

(1.2)

For convenience, the calculation of the Coulombic site energies—entering the diagonal energies
of a tight-binding Hamiltonian—has been based upon a homogeneously distributed cationic
charge,zM = 1− x, both in analytical and numerical computations of the electronic structure
of ionic liquids and charge-transfer alloys. In the low-x regime, however, electronic eigen-
states are localized in the conduction band tail down to the regime of so-called quasiatomic
states [15], leading to an obvious inconsistency. We will refer to this inconsistency as the
localization dilemma.

From a theoretical perspective, the thermodynamic properties of alkali–alkali halide
melts have been addressed by Dijkstraet al [17] and by Holzhey and Schirmacher [18].
Recently, Freyland and the present authors [19] have utilized Ginoza’s screened mean-spherical
approximation [20]—as suggested by Yurdabaket al[21]—to describe the non-metal→ metal
crossover in the K–KCl system in terms of a balance between strongly localized electrons
populating F centres and nearly free electrons.
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In this article, we address the question of the homogeneous or heterogeneous nature of
the distribution of the excess electronic charge from an analytical and a numerical point of
view. We are thus restricted to the RPM as one of the few models relevant to ionic liquids that
is analytically tractable within the MSA. It is essential to note that we work within a purely
classical model and completely neglect quantum mechanical degrees of freedom.

The remainder of the article is organized as follows. In the next section, we demonstrate
that within the mean-spherical approximation (MSA), the RPM exhibits a heterogeneous
charge distribution. In the third section, the Monte Carlo algorithm underlying the computer
simulations is presented. Numerical and simulation results relevant to the parameter range
of dense ionic liquids are presented and discussed in the fourth section, and conclusions are
derived in the final section.

2. Mean-spherical approximation

The Ornstein–Zernike (OZ) equation

hij (r) ≡ gij (r)− 1= cij (r) + ρ
∑
k

xk

∫
cik(|r − r′|)hkj (r ′) dr′ (2.1)

forms the basis of the theoretical treatment of multicomponent liquids [22]. The radial
pair distribution functions,gij (r), are expressed in terms of the direct correlation functions,
cij (r). For the restricted primitive model, all ionic hard-sphere diameters are identical, and
hij (r) = −1 for r < σ holds. Within the MSA, a closure relation for the OZ integral equation
is introduced by approximating the direct correlation function by

cij (r) = −βe
2zizj

4πε0r
. (2.2)

The details of the computation have been presented by Blum and Høye [23]. The results can
be expressed in terms of the MSA screening constant

0 = −1 +
√

1 + 2σκ

2σ
(2.3)

which only depends on the hard-sphere diameterσ and on the Debye screening constant,

κ =
√
βe2

ε0

∑
i

ρiz
2
i . (2.4)

The MSA internal energy equals

1U = − e2ρ

4πε0

0

1 +0σ︸ ︷︷ ︸
A

∑
i

ρiz
2
i

ρ︸ ︷︷ ︸
B

. (2.5)

2A can be interpreted as the equivalent of a Madelung constant for the liquid state;B is
introduced here as a convenient abbreviation.

For a homogeneous charge distribution, global charge neutrality and stoichiometry
constraints lead for the Mx [MX] 1−x system to the following ionic charges and partial densities:
zX = −1, ρX/ρ = (1− x)/(2− x), zM = (1− x) andρM/ρ = 1/(2− x). Inserting these
quantities into the definitions of the Debye screening constant, equation (2.4), and computing
0 using equation (2.3), we arrive at

0H =
[
− 1 +

√
1 + 2σ

√
D(1− x)

]/
2σ (2.6)
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with D = βe2ρ/ε0 and
√

[D(1− x)] = κH. The subscript distinguishes the case of a homo-
geneous (H) from that of an inhomogeneous (I) charge distribution. ForB, as defined in
equation (2.5), we arrive at

BH = B−H +B+
H =

1− x
2− x (−1)2 +

1

2− x (1− x)
2 = 2− 3x + x2

2− x . (2.7)

The case of the inhomogeneous charge distribution can be characterized byzX = −1,
ρX/ρ = (1− x)/(2− x), zM+ = +1,ρM+/ρ = (1− x)/(2− x), zM0 = 0,ρM0/ρ = x/(2− x).
With

κI =
√

2D(1− x)/(2− x)
we arrive at a MSA screening constant

0I =
[
− 1 +

√
1 + 2σ

√
2D(1− x)/(2− x)

]/
2σ. (2.8)

We note that

BI = B−I +B+
I +B0

I =
1− x
2− x (−1)2 +

1− x
2− x (+1)2 +

x

2− x 02 = 2(1− x)
2− x . (2.9)

It immediately follows that

BH

BI
= 2− 3x + x2

2(1− x) = 1− x
2
6 1. (2.10)

0I and0H only differ in their Debye screening constants,κ. As κH = 2κI/(2− x) and as it
appears as a positive quantity in the numerator of the0 formula (equations (2.3), (2.6), (2.8),
we note that0I > 0H. Consequently, the following inequality holds:

AH

AI
= 0H

0I

1 +0Iσ

1 +0Hσ
= 0H + 0H0Iσ

0I + 0H0Iσ
6 1. (2.11)

As bothAH/AI andBH/BI are smaller than or equal to unity, the same statement holds for the
corresponding ratio of the internal energies,UH/UI ∝ (AHBH)/(AIBI) (cf. equation (2.5)).

Within the MSA, the free energy of the model system at constant volume, temperature
and particle number (NVT ) is given by

1F = 1U +
kBT

3πρ
03 + kBT

∑
i

xi ln xi. (2.12)

In the dilute regime (0σ = 0), the first two terms on the right-hand side of equation (2.12) can
be reduced to

1F = −1

3

(
e2B

4πε0

)3/2(
ρ

kBT

)1/2

(2.13)

As shown above (equation (2.10)),BH is smaller thanBI and, consequently, the system
characterized by an inhomogeneous charge distribution is stabilized with respect to its homo-
geneous counterpart. The assumption that1S is given by the ideal entropy of mixing—as
expressed in equation (2.12)—leads to an additional stabilization. Considering the numerical
results for1F in the high-density regime described below and the conclusions derived from
the dilute regime, it is not completely unlikely that an inhomogeneous charge distribution is
also stabilized in the intermediate regime. It goes without saying that this assumption—even if
substantiated by numerical evaluations of the MSA scheme—cannot replace a rigorous proof.

Regardless of the density, the free energy can be expanded as a Taylor series aroundx = 0.
We introduce the constantsC = e2/4πε0, E = kBT/3πρ and the expression

Q =
√

1 + 2σ
√
D (2.14)
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which is larger than unity for any non-trivial ionic density,ρ > 0. Considering that0 = f (x),
we arrive at

1FI = 1F
∣∣
x=0 +

√
D

8

4C + 8CQ− 3ED

1 +Q3
x + O(x2) (2.15)

and

1FH = 1F
∣∣
x=0 +

√
D

8

8C + 4CQ− 6ED

1 +Q3
x + O(x2) (2.16)

for the first two terms on the right-hand side of equation (2.12). WithQ > 1, C > 0 and
E > 0, it is straightforward to demonstrate that the initial slope of1FH(x) is larger than that of
1FI(x). This behaviour again indicates the relative stabilization induced by an inhomogeneous
charge distribution.

Within the mean-spherical approximation, we have thus demonstrated that the internal
energy1U of the restricted primitive model of ionic fluids of the type Mx [MX] 1−x is lowered
by replacing the homogeneous cationic charge distributionzM = 1− x by charges of unity
and zero. Both energies are trivially equal only in the limits of the pure metallic (x = 1) and
the pure ionic (x = 0) regimes. The free energy exhibits the same features in the low-density
regime and—independent of the density—for small excess metal concentrationsx.

3. Monte Carlo simulations

To model the microscopic structure of the primitive model of ionic fluids, we have applied the
standard Metropolis Monte Carlo (MC) algorithm [24]. The systems are simulated at constant
particle number, volume and temperature (NVT ). For each excess metal concentrationx, we
have performed 5000 MC steps to equilibrate the system, and a further 5000 steps to compute
averages. A Monte Carlo step is the attempt to move each ion once on average. The Adams
cut-off strategy is used to enforce local charge neutrality [25]. The experimental densities as
extrapolated top = 1 bar [26] have been used. Details of the systems simulated are listed in
table 1.

Table 1. Simulated systems (432 atoms), Madelung potentialsVM and their RMS fluctuations,
1VM, for electronic test charges.

Number Vmol

x of anions (cm3) VM+ ±1VM+ VM− ±1VM− 1VM0

0.000 216 51.36 8.23± 0.84 −8.22± 0.84 —
0.094 205 51.97 8.28± 0.87 −8.25± 0.84 0.86
0.145 199 53.03 8.22± 0.86 −8.28± 0.87 0.81
0.226 188 54.16 8.26± 0.85 −8.25± 0.82 0.82
0.335 173 56.09 8.23± 0.86 −8.26± 0.87 0.80
0.444 154 57.38 8.28± 0.89 −8.26± 0.86 0.79
0.631 116 58.49 8.29± 0.90 −8.19± 0.87 0.79
0.827 64 60.35 7.94± 0.99 −8.03± 1.03 0.79

The cationic chargeszM are allowed to vary continuously between zero and unity, with
the constraint of global charge neutrality. Starting from a uniform cationic charge distribution
zM = 1−x, small packets of chargesδzM are allowed to hop between the cations. The quantity
δzM is drawn from a box distribution in the interval [0, 0.1], and charge transfer between cations
is accepted or rejected according to the Metropolis MC rules. In addition, a charge-transfer step
is rejected if it leads to a cationic charge smaller than zero or larger than unity. As is common
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for systems that exhibit electronic degrees of freedom, we use a two-thermostat strategy [27]:
the ionic degrees of freedom are simulated at the actual temperature (here:kBT = 0.101 eV),
whereas the electronic degrees of freedom are coupled to a low-temperature heat bath at 5 K.
For each particle trial move, ten attempts to transfer cationic charges have been performed.

4. Numerical results and discussion

In figure 2, we present numerical results for the internal energy per ion,1U , and the free
energy per ion,1F , as functions of the excess metal concentrationx [30]. The free energy
has been evaluated at constant temperature, volume and particle number. Energy values have
been obtained within the MSA for a homogeneous charge distribution,zM = 1 − x, and
a binodal charge distribution,zM ∈ {0, 1}. The Monte Carlo simulations described in the
last section rapidly converge to the binodal charge distribution used for the inhomogeneous
MSA computations. For all systems studied, the maximum accepted charge transfer after
equilibration amounts toδzM = 1× 10−3. The two peaks of the charge distribution show a
maximum RMS fluctuation of1zM = 2.5× 10−3. In addition, we have performed Monte
Carlo simulations with fixed homogeneous cationic charges. For both types of MC simulation,
the internal energy as a function ofx is shown in figure 2. As is evident from this figure, the
energetics of the MSA is in good agreement with the corresponding MC results. Both the
MSA results and the computer simulations clearly indicate the strong stabilization of the
model characterized by a binodal charge distribution with reference to a homogeneous charge
distribution. Atx = 1/2, the MSA stabilization energy amounts to slightly more than half an
electron volt. The free energy as a function of excess metal concentration exhibits the same
tendency as the internal energy:1FI and1FH are well separated for all but the largest values
of x, and1FH > 1FI .

Figure 2. Energy as a function of excess metal concentration. From top to bottom: (a)1F ,
homogeneous charge distribution, MSA (dotted curve); (b)1F , binodal charge distribution,
MSA (solid curve); (c)1U , homogeneous charge distribution, MSA (dotted curve); (d)1U ,
homogeneous charge distribution, MC simulation (◦ symbols); (e)1U , binodal charge distribution,
MSA (solid curve); (f )1U , binodal charge distribution, MC simulation (× symbols). The energy
is in electron volts per ion.
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Figure 3. The anion–cation radial pair
distribution function at stoichiometry (x =
0, solid curve) and for an excess metal
concentration ofx = 0.631 (dotted curve).
In the interval from 3.8 to 12 Å, the PDF has
been enlarged by a factor of 17.5. The radius
is in ångstr̈oms.

In figure 3, the cation–anion partial pair distribution function,g+−(r), is presented at
stoichiometry and atx = 0.631. Both curves exhibit oscillations characteristic of ionic fluids.
It is interesting to note that these oscillations are more pronounced in the dilute system. The
number of ionic neighbours next to a given ion (defined via a cut-off radius ofrc = 3.8 Å)
increases from 4.5 at stoichiometry to 6.1 atx = 0.631.

In the range of excess metal concentrations 06 x 6 0.827, the Coulombic site energies,
VM, of anions and cations in the binodal charge distribution model vary between 7.94 and 8.29
electron volts. As the total energy of a system comprising equi-sized ions of opposite charge
should remain constant upon reversing the sign of all charges, and as neutral particles should
on average experience a neutral neighbourhood on all length scales, the average Madelung
potential probed by an electronic test charge located on a neutral metal atom equals zero. Like
its ionic counterpart it does, however, experience variations in its local environment that lead
to Madelung potential fluctuations on the same energy scale as those characteristic of ions,
namely. 0.8–0.9 electron volts (see table 1).

For x = 0.094, we have computed the electronic structure of the model system using
the tight-binding Hamiltonian given by one of the present authors [10, 28, 29]. The model
Hamiltonian is characterized by nearest- and next-nearest-neighbour short-range hopping
between atomic s and p orbitals. The diagonal elements are the sum of the valence orbital
ionization potentials (K) or the electron affinities (Cl), the Madelung potential experienced
by an electronic test charge and a polarization contribution [31]. For the three different types
of particle present in the model liquid, we arrive at average values ofεs,Cl− = −22.21 eV,
εp,Cl− = −10.11 eV, εs,K+ = +1.16 eV, εp,K+ = +2.77 eV, εs,K0 = −4.34 eV and
εp,K0 = −2.73 eV. The resulting density of states—as presented in figure 4—is based upon
50 realizations, each providing 1728 eigenvalues of the Hamiltonian matrix. Similarly to
the case for figure 1, the anionic valence band (centred at∼−10.5 eV) and the cationic
conduction band (centred at∼+3 eV) are broadened by electron hopping and Madelung
potential disorder [15, 16, 28]. The small band located in the band gap of the stoichiometric
compound (at∼−3 eV) can be unambiguously attributed to neutral potassium (K0) states. The
Fermi level—indicated by a vertical dotted line—lies atE = −4.68 eV within the K0 band,
almost coinciding with the centre of the F-centre band (E = −4.87 eV [10]), as represented by
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Figure 4. The computed density of states for an excess metal concentration ofx = 0.094. From
left to right: chlorine valence, neutral metal atom and cationic conduction band. The solid curve is
a guide to the eye. The Fermi level is indicated by a dotted vertical line. The F-centre ground-state
band—as shown in figure 1—is indicated by a dotted curve. The energy is in electron volts, and
the density of states is per electron volt and atom.

the dotted curve. This picture is in accord with the experimental observation of the coexistence
of eigenstates giving rise to an optical absorption characteristic of F centres and eigenstates
that show a Drude-like frequency-dependent dielectric response [6,7]. In contrast to the model
characterized by a homogeneous charge distribution, M0 and F-centre eigenstates coexist at
the Fermi level.

5. Conclusions

In this work, we have studied the distribution of the excess electronic charge of systems
exhibiting electronic degrees of freedom with reference to alkali metal–alkali halide melts,
Mx [MX] 1−x , within the mean-spherical approximation and by Monte Carlo simulations.
Within the MSA, we have been able to demonstrate for the restricted primitive model of
equi-sized ions that charge separation is energetically favoured, regardless of the parameters
characterizing the model. This result has been confirmed and illustrated using Monte Carlo
simulations. In the small-x regime, we have computed the electronic structure of the model
system, leading to the formation of a small M0 band energetically located between the anionic
valence and the cationic conduction band, in which the Fermi level now lies. Around the
Fermi level, both F-centre and M0 states exist, in accord with the experimental observation
of simultaneous optical absorption between defect states and a Drude-like behaviour of the
conduction electrons.

The principle that charge separation is energetically favoured in Coulomb systems with
electronic degrees of freedom solves the ‘localization dilemma’ expressed in the introduction:
in the regime of small excess metal concentrationsx, the charge distribution used to generate
the microscopic geometry of the system is now consistent with the results of the electronic
structure computation that is based upon this geometry.
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The range of validity of this principle is obviously limited to the regime where significant
broadening of the binodal charge distribution by thermal effects or by electron hopping can
be neglected. In the latter case, the kinetic energy of the delocalized electrons leads to
the formation of bands and compensates for the energy difference between systems with
homogeneous and binodal charge distributions, and the system will finally cross over to metallic
behaviour. Although we use fractional charges in the Monte Carlo simulations, quantum effects
are completely neglected in the approach presented here. Therefore, it is impossible to address
the question of whether eigenstates of the electronic Hamiltonian are localized or extended.
The calculations do, however, give an idea of the delocalization energy that has to be created by
the formation of bands in order to overcome the splitting between a localized and a delocalized
charge distribution. Whenever the M0 bands are narrow or eigenstates below the Fermi level
are highly localized, electron–electron interaction will play an additional rôle [15, 16]. The
on-site electron–electron interaction, manifest in the Hubbard spin-pairing energyU , prevents
the system studied here from further lowering its energy by means of the disproportionation
2M0→ M+ + M−.

It is highly desirable to check the validity of the principle of maximum charge separation
postulated in this work for systems that show a more refined parametrization scheme than
the restricted primitive model used here. One of these schemes, the unrestricted primitive
model of non-equi-sized charged hard spheres can be approached within the MSA, like its
restricted counterpart [23], although it lacks the simple analytical tractability of the RPM. The
MSA coupling constant,0, and the energies1U(0) and1F(0) would have to be evaluated
numerically. Thus, the use of simple analytical arguments, as applied in the second section,
becomes extraordinarily difficult.

As a large variety of systems that exhibit electronic degrees of freedom are dominated by
Coulombic interactions, theprinciple of maximum charge separationwill not be restricted to
metal–molten-salt solutions. The intimately related liquid ionic alloys [32]—with CsyAu1−y
as the most prominent example—and compensated doped semiconductors like Si:PxBy or
metal oxides at high temperatures like SrFe(III, IV)O3−1 (0 6 1 6 1/2 [33]) that cannot be
described within the model of non-interacting small polarons are candidates worth inspecting
from this point of view. Highly diluted systems, on the other hand, are characterized by a
small MSA screening constant0 and a small energy difference between homogeneous and
heterogeneous charge distributions. Here, concentration-independent polarization terms of the
typeVpol ∝ z2/εσ will dominate the energetics of the system, but will nevertheless lead to an
identical charge distribution.
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